d and f-Block Elements

- The equivalent weight of $MnSO_4$ is half of its 1. molecular weight when it is converted to
 - (b) MnO_2 (a) Mn_2O_3
 - (d) MnO_{4}^{2-} (c) MnO_4^-
- In which compound chromium has +6 oxidation 2. state

[CPMT 2003]

10.

(2)

(a) $K_2 Cr_2 O_7$ (b) $CrCl_3$

- (d) None of these (c) $Cr(SO_4)_3$
- Which of the following metal does not show 3. variable valency

[RPET 2000]

CLICK HERE

- (a) *Fe* (b) *Hg* (c) Zn (d) Cu
- Which of the following metals will not react with 4. solution of CuSO 4 [CPMT 1974, 80; MH CET 2004]

(a)	Fe	(b) <i>Zn</i>
(c)	Mg	(d) Ag

Which metal among following has strongest 5٠ tendency to undergo oxidation [CPMT 1989]

(a)	Zn	(b)	Си
(c)	Mg	(d)	Al

6. Which of the following has highest paramagnetic character

(a)	Mn (II)	(b)	Fe (II)
(c)	Co (II)	(d)	Ni (II)

Ammonia is a Lewis base. It forms complexes 7. with cations. Which one of the following cations does not form complex with ammonia

colourless complex [AMU 2000]							
	Which of	the	following	is	expected	to	form
	(c) <i>Cd</i> ⁺⁺		(c	l) P	b^{++}		
	(a) Ag^+ (b) Cu^{++}						

8.

(a) Ni^{2+} (b) Cu⁺

(c) Ti^{3+} (d) Fe^{3+}

Which of the following is ferromagnetic 9.

(c) W (d) Co

	(a) + 2 (0) +4					
	(c) +5 (d) +7					
11.	The number of unpaired electrons in Mn^{+3} is						
	(a) 4 (b) 3					
	(c) 2 (
12.	The correct order	of	ion	ic	rad	lii	of
	Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is		[CBSE	E PM	T 20	03]
	(a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3-}$	F					
	(b) $Y^{3-} < La^{3+} < Eu^{3+} < Lu^{3+}$						
	(c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$						
	(d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$						
	(Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$)						
13.	One mole of potassium	dich	rom	ate	com	plet	ely
oxidises the following number of moles o					s of :	ferr	ous
	sulphate in acidic medium			[M	P PE	T 19	97]
	(a) 1 (b) 3					
	(c) 5 (d) 6					
14.	The atomic radii from	Cr	to	Си	is	alm	ost
	identical because of						
	(a) Increasing nuclear cha	rge fr	rom	Cr	to C	Сu	

ET Self Evaluation Test -19

The most stable oxidation state of *Mn* is

(h) + 4

- (b) Repulsion among increased electrons
- (c) Increased screening effect to nullify increased nuclear charge
- (d) All the above
- 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001]
 - (a) + 6 and + 7(b) + 6 and + 6(c) + 7 and + 7(d) + 7 and + 6
- When phosphine is passed through aqueous 16. solution of copper sulphate, the product produced is

(a)
$$Cu(OH)_2$$
 (b) Cu_3P_2

(c) $[Cu(PH_3)_4]^{2+}$ (d) $[Cu(PH_3)_2]^{2+}$

Hydroxide soluble in ammonia is 17.

[NCERT 1973, 77; MNR 1984; KCET 1992]

🕀 www.studentbro.in

- (a) $Al(OH)_3$ (b) $Fe(OH)_3$
- (d) $Cu(OH)_2$ (c) $Cr(OH)_3$
- Which of the following pair of transitional 18. elements exhibit highest and lowest density
 - (a) Os and Sc (b) Os and Pt
 - (c) Hg and Sc (d) Os and Ir

- d and f-Block Elements 897
- (a) MnO_4

(c) *Fe*⁺⁺

(b) NH_4^+

(d) SO_4^{2-}

(SET -19)

Answers and Solutions

[BHU 1979]

1. (b)
$$MnSO_4 \xrightarrow{-2e^-} MnO_2$$

19.

Equivalent wt. = $\frac{\text{molecular wt.}}{\text{total no. of } e^-\text{ gained or lost}} = \frac{M}{2}$

When an acidified solution of ferrous ammonium

sulphate it treated with potassium permanganate

2. (a) In $K_2Cr_2O_7$, Cr has + 6 oxidation state.

solution, the ion which is oxidised is

- **3.** (c) Zn shows only + 2 valency.
- 4. (d) Because Ag comes below in the electromotive series also standard electrode potential of Cu and Ag are:

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s); [SEP - E_{298}^{o}(volt) = +0.18]$

 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$; [SEP $-E_{298}^{o}$ (volt) = +0.80]

5. (c) Mg; because of its high hydration energy.

6. (a)
$$Mn^{+2} - 3d^5$$

5 unpaired element in *d*-subshell so it has highest paramagnetic.

- 7. (d) Pb^{++} because it does not have vacant *d*-orbitals nor high nuclear charge and it does not belong to transition series.
- 8. (b) In Cu^{+1} (cuprous ion) d orbitals are completely filled so it will form colourless complex.
- **9.** (d) The substances which are strongly attracted by magnetic field and show permanent magnetism even in absence of magnetic field are ferromagnetic *e.g.*. *Co*,*Fe*,*Ni*

0.15

10. (a)

			<i>3a</i>			4 <i>s</i> ~
Мn	1	1	1	1	1	11,
Mn^{+2}	1	1	1	1	1	

As half filled orbitals are more stable than partial filled ones. Therefore, + 2 is most stable oxidation state.

12. (c) Lanthanide contraction results in small size of Lu^{3+} , so

$$Lu^{3+} < Y^{3+} < Cu^{3+} < La^{3+}$$

- 13. (d) Oxidation number of chromium in potassium dichromate is +6 so it oxidise 6 moles of ferrous sulphate in acidic medium.
- 14. (c) Increased screening effect to nullify increased nuclear charge.
- **15.** (a) O.N. of $K_2 MnO_4$

Ì

$$2+x-8=0$$

 $x = 6$
O.N. of *KMnO*₄
 $1+x-8=0$
 $x = 7$

16. (b) $3CuSO_4 + 2PH_3 \rightarrow Cu_3P_2 + 3H_2SO_4$

- 17. (d) Due to formation of complex $Cu(OH)_2 + 4NH_3 \rightarrow [Cu(NH_3)_4](OH)_2$
- **18.** (a) Os and Sc

$$Os = 22.60 \ gm/cm^3$$

 $Sc = 3.01 \ gm/cm^3$

19. (c)
$$Fe^{2+} \xrightarrow{\text{oxidises}} Fe^{3+}$$

CLICK HERE

🕀 www.studentbro.in

